SYNTHESIS OF SOME NEW OXADIAZOLINE DERIVATIVES FROM 6-METHYL NICOTINATE
Keywords:
1, 3, 4-oxadiazoline, Heterocyclic, hydrazone compounds, 6-Methyl nicotinateAbstract
Background: Heterocyclic compounds have attracted considerable research due to their critical applications in biology and medicine.
Methods: The synthesis involved the production of four derivatives of the 1,3,4-oxadiazoline compound. The process commenced with converting 6-methyl nicotinate to 6-methyl nicotinic acid hydrazide through a reaction with (99%) hydrazine hydrate. Subsequently, the hydrazone was synthesized by reacting to 6-methyl nicotinic acid hydrazide with various aromatic aldehydes. Finally, oxadiazole derivatives were generated through a cyclization reaction between the hydrazone and acetic anhydride.
Results: The FT-IR, 1H-NMR, and 13C-NMR techniques were used to confirm the structure of the produced compounds.
Conclusion: Successful 13C-NMR, 1H-NMR, and FTIR data analysis support the compound's synthesis.
References
1. “A review on biological and medicinal impact of heterocyclic compounds”.
2. K. A. Al-Badrany, A. S. Mohammed, and Y. K. Alasadi, “Synthesis of some new 1,3,4-oxadiazole compounds derived from 1H-imidazole and study their biological activity,” Eurasian J Biosci, vol. 13, no. 1, pp. 501–507, 2019.
3. A. O. Maslat, M. Abussaud, H. Tashtoush, and M. Al-Talib, “SYNTHESIS, ANTIBACTERIAL, ANTIFUNGAL AND GENOTOXIC ACTIVITY OF BIS-1,3,4-OXADIAZOLE DERIVATIVES,” Polish Journal of Pharmacology Pol. J. Pharmacol, vol. 54, pp. 55–59, 2002.
4. D. R. Guda, S. J. Park, M. W. Lee, T. J. Kim, and M. E. Lee, “Syntheses and anti-allergic activity of 2-((bis(trimethylsilyl)methylthio/ methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles,” Eur J Med Chem, vol. 62, pp. 84–88, Apr. 2013, doi: 10.1016/j.ejmech.2012.12.035.
5. Zabiulla, A. R. Gulnaz, Y. H. E. Mohammed, and S. A. Khanum, “Design, synthesis and molecular docking of benzophenone conjugated with oxadiazole sulphur bridge pyrazole pharmacophores as anti inflammatory and analgesic agents,” Bioorg Chem, vol. 92, Nov. 2019, doi: 10.1016/j.bioorg.2019.103220.
6. Zabiulla, M. J. Nagesh Khadri, A. Bushra Begum, M. K. Sunil, and S. A. Khanum, “Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents,” Results Chem, vol. 2, Jan. 2020, doi: 10.1016/j.rechem.2020.100045.
7. S. Wang et al., “Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor,” Eur J Med Chem, vol. 206, Nov. 2020, doi: 10.1016/j.ejmech.2020.112672.
8. J. Javid et al., “Comparative conventional and microwave assisted synthesis of heterocyclic oxadiazole analogues having enzymatic inhibition potential,” J Heterocycl Chem, vol. 58, no. 1, pp. 93–110, Jan. 2021, doi: 10.1002/jhet.4150.
9. D. Zhang et al., “Design, synthesis and herbicidal activity of novel sulfonylureas containing triazole and oxadiazole moieties,” Chem Res Chin Univ, vol. 32, no. 4, pp. 607–614, Aug. 2016, doi: 10.1007/s40242-016-6029-2.
10. M. Yadav, R. Srivastava, F. Naaz, A. Singh, R. Verma, and R. K. Singh, “In silico studies on new oxathiadiazoles as potential anti-HIV agents,” Gene Rep, vol. 14, pp. 87–93, Mar. 2019, doi: 10.1016/j.genrep.2018.12.004.
11. B. W. Matore, P. Banjare, T. Guria, P. P. Roy, and J. Singh, “Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery,” European Journal of Medicinal Chemistry Reports, vol. 5, Aug. 2022, doi: 10.1016/j.ejmcr.2022.100058.
12. M. T. Ibrahim, A. Uzairu, G. A. Shallangwa, and A. Ibrahim, “In-silico studies of some oxadiazoles derivatives as anti-diabetic compounds,” J King Saud Univ Sci, vol. 32, no. 1, pp. 423–432, Jan. 2020, doi: 10.1016/j.jksus.2018.06.006.
13. Z. Yang et al., “Novel pyrethrin derivatives containing an 1,3,4-oxadiazole thioether moiety: Design, synthesis, and insecticidal activity,” J Heterocycl Chem, vol. 57, no. 1, pp. 81–88, Jan. 2020, doi: 10.1002/jhet.3750.
14. A. M. Abdulwahid, M. N. Mousa, and H. Hamza Salman, “Synthesis and Characterization of Some New 1,2,4-Triazole linked to Schiff bases Derived From Ibuprofen as a Possible to Inhibit TNF-α,” Egypt J Hosp Med, vol. 89, no. 2, pp. 7314–7320, 2022, [Online]. Available: https://ejhm.journals.ekb.eg/
15. A. Al-Mulla, “ISSN 0975-413X CODEN (USA): PCHHAX A Review: Biological Importance of Heterocyclic Compounds,” Der Pharma Chemica, vol. 9, no. 13, pp. 141–147, 2017, [Online]. Available: www.derpharmachemica.com
16. R. R. Bhandare et al., “Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents,” Journal of Saudi Chemical Society, vol. 26, no. 3, May 2022, doi: 10.1016/j.jscs.2022.101447.
17. K. S. Alhadad, R. S. Elias, H. Hamza Salman, R. M. Hraishawi, and C. Author, “Journal of Global Pharma Technology Synthesis, Characterization and Antimicrobial Evaluation of Some New 1, 3, 4-oxadiazoline Compounds,” Journal of Global Pharma Technology, vol. 12, no. 1, pp. 700–710, 2020, [Online]. Available: www.jgpt.co.in
18. S. K. Verma, R. Verma, S. Verma, Y. Vaishnav, S. P. Tiwari, and K. P. Rakesh, “Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review,” Eur J Med Chem, vol. 209, Jan. 2021, doi: 10.1016/j.ejmech.2020.112886.
19. V. H. Pham, T. P. D. Phan, D. C. Phan, and B. D. Vu, “Synthesis and bioactivity of hydrazide-hydrazones with the 1-adamantyl-carbonyl moiety,” Molecules, vol. 24, no. 21, Nov. 2019, doi: 10.3390/molecules24214000.
20. H. Boulebd, Y. Zine, I. A. Khodja, A. Mermer, A. Demir, and A. Debache, “Synthesis and radical scavenging activity of new phenolic hydrazone/hydrazide derivatives: Experimental and theoretical studies,” J Mol Struct, vol. 1249, Feb. 2022, doi: 10.1016/j.molstruc.2021.131546.
21. “oxadiazole”.
22. F. Samy and A. Taha, “Synthesis, spectroscopic, biological and theoretical studies of nano complexes derived from triazine hydrazone,” Egypt J Chem, vol. 61, no. 5, pp. 731–746, 2018, doi: 10.21608/ejchem.2018.3798.1326.
23. X. Yang, E. Jia, G. Ye, and J. Xu, “Thermal degradation behavior and probable mechanism of aromatic poly(1,3,4-oxadiazole)s fibers,” Polymer Bulletin, vol. 72, no. 5, pp. 1067–1080, May 2015, doi: 10.1007/s00289-015-1322-7.
24. N. A. Mohamed, “Biologically active maleimido aromatic 1,3,4-oxadiazole derivatives evaluated thermogravimetrically as stabilizers for rigid PVC,” J Therm Anal Calorim, vol. 131, no. 3, pp. 2535–2546, Mar. 2018, doi: 10.1007/s10973-017-6843-x.
25. S. L. Dhonnar, N. V. Sadgir, V. A. Adole, and B. S. Jagdale, “Molecular Structure, FT-IR Spectra, MEP and HOMO-LUMO Investigation of 2-(4-Fluorophenyl)-5-phenyl-1, 3,4-oxadiazole Using DFT Theory Calculations,” Advanced Journal of Chemistry, Section A, vol. 4, no. 3, pp. 220–230, May 2021, doi: 10.22034/ajca.2021.283003.1254.
26. G. Q. Ali and I. H. R. Tomi, “Synthesis and characterization of new mesogenic esters derived from 1,2,4-oxadiazole and study the effect of alkoxy chain length in their liquid crystalline properties,” Liq Cryst, vol. 45, no. 3, pp. 421–430, Feb. 2018, doi: 10.1080/02678292.2017.1338767.
27. F. O. Essa and K. J. K. Al-Hamdani, “Synthesis of new oxadiazole, triazole and oxazepine derivatives of quinazoline moiety,” Asian Journal of Chemistry, vol. 30, no. 8, pp. 1706–1710, 2018, doi: 10.14233/ajchem.2018.21277.
28. M. S. Najare, M. K. Patil, S. Mantur, A. Q. A. Nadaf, S. R. Inamdar, and I. A. M. Khazi, “Highly conjugated D-π-A-π-D form of novel benzo[b]thiophene substituted 1,3,4-oxadiazole derivatives; Thermal, optical properties, solvatochromism and DFT studies,” J Mol Liq, vol. 272, pp. 507–519, Dec. 2018, doi: 10.1016/j.molliq.2018.09.094.
29. K. Drozdowska, T. Welearegay, L. Österlund, and J. Smulko, “Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing,” Sens Actuators B Chem, vol. 353, Feb. 2022, doi: 10.1016/j.snb.2021.131125.
30. L. A. Kayukova, A. B. Uzakova, A. V. Vologzhanina, K. Akatan, E. Shaymardan, and S. K. Kabdrakhmanova, “Rapid Boulton–Katritzky rearrangement of 5-aryl-3-[2-(piperidin-1-yl)ethyl]-1,2,4-oxadiazoles upon exposure to water and HCl,” Chem Heterocycl Compd (N Y), vol. 54, no. 6, pp. 643–649, Jun. 2018, doi: 10.1007/s10593-018-2321-z.
31. M. S. Shaykoon et al., “Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives,” Bioorg Chem, vol. 100, Jul. 2020, doi: 10.1016/j.bioorg.2020.103933.
32. F. Golmohammadi, S. Balalaie, F. Hamdan, and S. Maghari, “Efficient synthesis of novel conjugated 1,3,4-oxadiazole-peptides,” New Journal of Chemistry, vol. 42, no. 6, pp. 4344–4351, 2018, doi: 10.1039/c7nj04720g.
33. S. Yang et al., “Synthesis and biological activity of benzamides substituted with pyridine-linked 1,2,4-oxadiazole,” Molecules, vol. 25, no. 15, Aug. 2020, doi: 10.3390/molecules25153500.
34. E. Mohammed, J. Mohsen, and I. S. Hadi, “Synthesis, Evolution Anticancer and Microbial Activity of Some 1,3,4-Oxadiazoles Analogues,” Egypt J Hosp Med, vol. 89, no. 2, p. 6803, 2022, [Online]. Available: https://ejhm.journals.ekb.eg/
35. P. Rayam et al., “Design and synthesis of oxaprozin-1,3,4-oxadiazole hybrids as potential anticancer and antibacterial agents,” J Heterocycl Chem, vol. 57, no. 3, pp. 1071–1082, Mar. 2020, doi: 10.1002/jhet.3842.
36. Y. Feng, Y. Chen, Y. Ren, H. Zhang, and S. Cao, “Synthesis and Crystal Structure Studies of Mitomycin C Dihydrate,” Crystal Structure Theory and Applications, vol. 09, no. 02, pp. 13–21, 2020, doi: 10.4236/csta.2020.92002.
37. S. Izgi, I. F. Sengul, E. Şahin, M. S. Koca, F. Cebeci, and H. Kandemir, “Synthesis of 7-azaindole based carbohydrazides and 1,3,4-oxadiazoles; Antioxidant activity, α-glucosidase inhibition properties and docking study,” J Mol Struct, vol. 1247, Jan. 2022, doi: 10.1016/j.molstruc.2021.131343.
38. S. Chortani et al., “Novel 1,3,4-oxadiazole linked benzopyrimidinones conjugates: Synthesis, DFT study and antimicrobial evaluation,” J Mol Struct, vol. 1217, Oct. 2020, doi: 10.1016/j.molstruc.2020.128357.
39. P. A. Volkov et al., “Three-Component Reaction of 4-Methylpyridine with Alkyl Propiolates and Secondary Phosphine Chalcogenides,” Russ J Gen Chem, vol. 88, no. 5, pp. 912–918, May 2018, doi: 10.1134/S1070363218050122.
40. E. H. Tawfik, K. S. Mohamed, H. M. Dardeer, and A. A. Fadda, “Synthesis, characterization and cytotoxicity evaluation of some novel pyridine derivatives,” Acta Chim Slov, vol. 65, no. 4, pp. 787–794, 2018, doi: 10.17344/acsi.2018.4294.
41. A. Z. Nasr, A. Farahat, M. A. Zein, and E. S. M. Abdelrehim, “Synthesis and Antimicrobial Activity of 1,3,4-Oxadiazoline, 1,3-Thiazolidine, and 1,2,4-Triazoline Double-Tailed Acyclo C-Nucleosides,” ACS Omega, vol. 7, no. 20, pp. 16884–16894, May 2022, doi: 10.1021/acsomega.1c06339.
42. S. Lachhab et al., “Synthesis of new 3-acetyl-1,3,4-oxadiazolines combined with pyrimidines as antileishmanial and antiviral agents,” Mol Divers, vol. 27, no. 5, pp. 2147–2159, Oct. 2023, doi: 10.1007/s11030-022-10548-9.