EARLY DETECTION OF GLOMERULAR FILTRATION RATE ABNORMALITIES IN PATIENTS WITH INSULIN RESISTANCE BASED ON THE DEGREE OF OBESITY
Keywords:
CHF, CKD, CVD, GFRAbstract
This study investigated the relationship between obesity and glomerular filtration rate (GFR) in patients with insulin resistance. A significant knowledge gap exists regarding the early detection of kidney dysfunction in this population, highlighting the need for improved risk stratification and management protocols. The study included 100 patients with overweight and obesity (aged 25-44 years) who were divided into groups based on body mass index (BMI). GFR was calculated using the Cockcroft-Gault and MDRD formulas.The study found that patients with obesity had a significantly higher GFR compared to the control group, with a direct correlation between BMI and GFR calculated using the Cockcroft-Gault formula. Furthermore, the prevalence of GFR reduction (<60 ml/min/1.73 m²) was significantly higher in patients with obesity compared to the control group and general population. The findings suggest that patients with obesity are at increased risk for early-stage kidney damage, even with a high GFR, highlighting the importance of early detection and intervention.Chronic heart failure (CHF) remains one of the most pressing medical and socio-economic problems despite significant progress in treatment, as the prognosis for these patients remains unfavorable. Intensive study of the relationship between cardiovascular and kidney pathologies has led to the development of the cardiorenal syndrome concept.
References
1. Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, Clark JM, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomized clinical trial. Lancet Diabetes Endocrinol (2016) 4(11):913–21.
2. Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomized, phase 3 trial. Lancet (2021) 398(10295):143–55. doi: 10.1016/S0140-6736(21)01324-6
3. Шилов Е.М. и др. Новые подходы к лечению больных хронической болезнью почек и метаболическим синдромом. Клиническая нефрология (2012) № 2, С. 72–76.
4. Friedman AN, Kaplan LM, le Roux CW, Schauer PR. Management of obesity in adults with CKD. J Am Soc Nephrology (2021) 32(4):777–90. doi: 10.1681/ASN.2020101472
5. Tesauro M, Mascali A, Franzese O, Cipriani S, Cardillo C, Di Daniele N. Chronic kidney disease, obesity, and hypertension: the role of leptin and adiponectin. Int J Hypertens (2012) 2012:943605. doi: 10.1155/2012/943605
6. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longevity Healthspan (2013) 2(1):8. doi: 10.1186/2046-2395-2-8
7. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med (1995) 122(7):481–6. doi: 10.7326/0003-4819-122-7-199504010-00001
8. Ahima RS. Connecting obesity, aging and diabetes. Nat Med (2009) 15(9):996–7. doi: 10.1038/nm0909-996
9. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, et al. Fat tissue, aging, and cellular senescence. Aging Cell (2010) 9(5):667–84. doi: 10.1111/j.1474-9726.2010.00608.x
10. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, et al. Senolytic drugs: Reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol (2021) 61:779–803. doi: 10.1146/annurev-pharmtox-050120-105018
11. Lair B, Laurens C, Van Den Bosch B, Moro C. Novel insights and mechanisms of lipotoxicity-driven insulin resistance. Int J Mol Sci (2020) 21(17). doi: 10.3390/ijms21176358
12. Palmer AK, Tchkonia T, Kirkland JL. Targeting cellular senescence in metabolic disease. Mol Metab (2022) 66:101601. doi: 10.1016/j.molmet.2022.101601
13. Tzanavari T, Giannogonas P, Karalis KP. TNF-α and obesity. Current Directions in Autoimmunity (2010) 11:145–156. doi: 10.1159/000289203
14. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature (1997) 389(6651):610–4. doi: 10.1038/39335
15. Lim CC, Teo BW, Tai ES, Lim SC, Chan CM, Sethi S, et al. Elevated serum leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney disease in Asian adults. PloS One (2015) 10(3) doi: 10.1371/journal.pone.0122009
16. Menon V, Li L, Wang X, Greene T, Balakrishnan V, Madero M, et al. Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrology (2006) 17(9):2599. doi:
10.1681/ASN.2006040331
17. Porrini E, Bayes B, Diaz Juan M, et al. Hyperinsulinemia and hyperfiltration in renal transplantation. Transplantation (2009) 87(2):274–279.
18. Suh SH, Oh TR, Choi HS, Kim CS, Lee J, Oh YK, et al. Association of high serum adiponectin level with adverse cardiovascular outcomes and progression of coronary artery calcification in patients with pre-dialysis chronic kidney disease. Front Cardiovasc Med (2021) 8:789488. doi:
10.3389/fcvm.2021.789488
19. Halberg N, Schraw TD, Wang ZV, Kim JY, Yi J, Hamilton MP, et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes (2009) 58(9):1961–70. doi: 10.2337/db08-1750
20. Агабабян Ирина Рубеновна and Юсупова Зумрад Кадамбоевна. Сурункали буйрак етишмовчилиги билан боғлиқ сурункали юрак етишмовчилигининг клиник хусусиятлари. Журнал Проблемы биологии и медицины (2022) № 6 (140)(декабрь. 2022), 26–30.