ASSESSMENT OF ANTIBIOTIC RESISTANCE IN BACTERIA ISOLATED FROM RADIOGRAPHY ROOMS IN MOSUL HOSPITALS

Authors

  • Belal Mishal Jabbar University of Mosul / College of Science / Department of Biophysics
  • Abdulazeez Nayyef Falah University of Mosul / College of Science / Department of Biophysics
  • Sabah Mirza Murad University of Mosul / College of Science / Department of Biophysics
  • Mahdi Saleh Bilal University of Mosul / College of Science / Department of Biophysics

Abstract

The increasing prevalence of antibiotic-resistant bacteria poses a significant threat to global public health. Hospitals and radiology rooms, as critical healthcare settings, have become potential reservoirs for the emergence and dissemination of such resistant strains. The rise of antibiotic resistance is primarily attributed to the overuse and misuse of antibiotics, creating a selective pressure that favors the survival and proliferation of resistant strains. Within hospital and radiology settings, this issue is exacerbated due to various factors, including the concentration of vulnerable patients, invasive medical procedures, prolonged hospital stays, and frequent contact with antimicrobial agents. Additionally, the nature of radiology rooms, which often house patients with severe infections or compromised immune systems, further contributes to the risk of bacterial transmission and subsequent resistance development. The aim of this study was to detect antibiotic-resistant bacteria found in hospital and radiology environments at Mosul hospitals. Four strains were isolated from communication surfaces in radiology rooms from three different hospitals. The isolated strains included two strains of E. coli and two strains of Salmonella enteritis. Chromogenic agar was used for strain differentiation, revealing a characteristic blue color for E. coli strains and a pink color for Salmonella enteritis strains. Subsequent sensitivity testing was performed to determine the antibiotic resistance and sensitivity profiles of the isolated strains. The results showed varying degrees of resistance among the strains. Antibiotic resistance was observed against commonly used antibiotics such as ampicillin, ciprofloxacin, and trimethoprim-sulfamethoxazole. However, the strains also exhibited sensitivity to certain antibiotics, including gentamicin and meropenem. The findings of this study provide valuable insights into the prevalence and resistance profiles of antibiotic-resistant bacteria in hospital and radiology environments. The detection of antibiotic-resistant strains, particularly E. coli and Salmonella enteritis, highlights the urgent need for stringent infection control measures and prudent antibiotic prescribing practices in these healthcare settings. Continued surveillance and monitoring of antibiotic resistance patterns are essential to effectively manage and mitigate the spread of resistant strains.

References

1. ADZITEY, F. 2015. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review.

2. AHN, J. G., CHO, H.-K., LI, D., CHOI, M., LEE, J., EUN, B.-W., JO, D. S., PARK, S. E., CHOI, E. H. & YANG, H.-J. 2021. Efficacy of tetracyclines and fluoroquinolones for the treatment of macrolide-refractory Mycoplasma pneumoniae pneumonia in children: a systematic review and meta-analysis. BMC infectious diseases 21, 1-10.

3. ALBORN JR, W., ALLEN, N. & PRESTON, D. 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrobial agents chemotherapy35, 2282-2287.

4. ALFEI, S. & SCHITO, A. M. 2022. β-lactam antibiotics and β-lactamase enzymes inhibitors, part 2: our limited resources. Pharmaceuticals, 15, 476.

5. ALKATHERI, A. H., YAP, P. S.-X., ABUSHELAIBI, A., LAI, K.-S., CHENG, W.-H. & ERIN LIM, S.-H. 2023. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics, 12, 190.

6. AMINOV, R. I. 2010. A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology, 1, 134.

7. AURILIO, C., SANSONE, P., BARBARISI, M., POTA, V., GIACCARI, L. G., COPPOLINO, F., BARBARISI, A., PASSAVANTI, M. B. & PACE, M. C. 2022. Mechanisms of action of carbapenem resistance. Antibiotics11, 421.

8. BEGUM, S., BEGUM, T., RAHMAN, N. & KHAN, R. A. 2021. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biological Pharmaceutical Sciences14, 087-097.

9. BHATTACHARJYA, S., MOHID, S. A. & BHUNIA, A. 2022. Atomic-resolution structures and mode of action of clinically relevant antimicrobial peptides. International Journal of Molecular Sciences23, 4558.

10. BRADFORD, P. A. & JONES, C. H. 2011. Tetracyclines. Antibiotic Discovery Development147-179.

11. BROOKS, G. F., CARROLL, K. C., BUTEL, J., MORSE, S., MIETZNER, T. & JAWETZ, M. 2007. Adelberg’s medical microbiology. Sultan Qaboos Univ Med J, 7, 273.

12. BUSH, N. G., DIEZ-SANTOS, I., ABBOTT, L. R. & MAXWELL, A. 2020. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules25, 5662.

13. CALDERÓN, C. B. & SABUNDAYO, B. P. 2007. Antimicrobial classifications. Antimicrobial susceptibility testing protocols, 7, 60-88.

14. CHEN, C.-R., MALIK, M., SNYDER, M. & DRLICA, K. 1996. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. Journal of molecular biology258, 627-637.

15. CHEN, N. & JIANG, C. 2023. Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry255, 115377.

16. CHOPRA, I. & ROBERTS, M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology molecular biology reviews65, 232-260.

17. CODJOE, F. S. & DONKOR, E. S. 2017. Carbapenem resistance: a review. Medical Sciences6, 1.

18. CODJOE, F. S., DONKOR, E. S., SMITH, T. J. & MILLER, K. 2019. Phenotypic and genotypic characterization of carbapenem-resistant gram-negative bacilli pathogens from hospitals in Ghana. Microbial Drug Resistance, 25, 1449-1457.

19. DENYER, S. P., HODGES, N. A. & GORMAN, S. P. 2008. Hugo and Russell's pharmaceutical microbiology, John Wiley & Sons.

20. DOMAGALA, J. M. 1994. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. Journal of Antimicrobial Chemotherapy33, 685-706.

21. ERDEM, H., KILIC, S., PAHSA, A. & BESIRBELLIOGLU, B. 2005. Gram-negative bacterial resistance to cephalosporins in community-acquired infections in Turkey. Journal of chemotherapy17, 61-65.

22. ETEBU, E. & ARIKEKPAR, I. 2016a. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res, 4, 90-101.

23. ETEBU, E. & ARIKEKPAR, I. 2016b. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res4, 90-101.

24. ETEBU, E. & ARIKEKPAR, I. 2016c. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. J. Appl. Microbiol. Biotechnol. Res4, 90-101.

25. FALAGAS, M. E., RAFAILIDIS, P. I. & MATTHAIOU, D. K. 2010. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug resistance updates13, 132-138.

26. FOWLER, J. 2021. Buddhism and the Coronavirus: The Buddha's Teaching on Suffering, Liverpool University Press.

27. FRANK, U. & TACCONELLI, E. 2012. The Daschner guide to in-hospital antibiotic therapy: European standards, Springer Science & Business Media.

28. FUOCO, D. 2012. Classification framework and chemical biology of tetracycline-structure-based drugs. Antibiotics, 1, 1.

29. GALE, E. F. 1981. Molecular basis of antibiotic action, J. Wiley.

30. GASPARRINI, A. J., MARKLEY, J. L., KUMAR, H., WANG, B., FANG, L., IRUM, S., SYMISTER, C. T., WALLACE, M., BURNHAM, C.-A. D. & ANDLEEB, S. 2020. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Communications biology3, 241.

31. GEORGE, S. S., PIMKIN, M. & PARALKAR, V. R. 2023. Construction and validation of customized genomes for human and mouse ribosomal DNA mapping. Journal of Biological 104766.

32. GRIMM, C., BARTULI, J. & FISCHER, U. 2022. Cytoplasmic gene expression: lessons from poxviruses. Trends in biochemical sciences

33. HAMILTON-MILLER, J. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriological reviews37, 166-196.

34. HEESEMANN 1993. Mechanisms of resistance to beta-lactam antibiotics. Infection, 21, S4-9.HÖLTJE, J.-V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology molecular biology reviews62, 181-203.

35. HSUEH, S.-C., LEE, Y.-J., HUANG, Y.-T., LIAO, C.-H., TSUJI, M. & HSUEH, P.-R. 2019. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. Journal of Antimicrobial Chemotherapy, 74, 380-386.

36. JEDNAČAK, T., MIKULANDRA, I. & NOVAK, P. 2020. Advanced methods for studying structure and interactions of macrolide antibiotics. International Journal of Molecular Sciences21, 7799.

37. JOSEPHINE, H. R., KUMAR, I. & PRATT, R. 2004. The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic β-lactams. Journal of the American Chemical Society126, 8122-8123.

38. KAHNE, D., LEIMKUHLER, C., LU, W. & WALSH, C. 2005. Glycopeptide and lipoglycopeptide antibiotics. Chemical reviews, 105, 425-448.

39. KAPOOR, G., SAIGAL, S. & ELONGAVAN, A. 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology, 33, 300.

40. KARDOS, N. & DEMAIN, A. L. 2011. Penicillin: the medicine with the greatest impact on therapeutic outcomes. Applied microbiology biotechnology92, 677-687.

41. KUMAR, S., MOLLO, A., KAHNE, D. & RUIZ, N. 2022. The bacterial cell wall: from lipid II flipping to polymerization. Chemical Reviews122, 8884-8910.

42. LEDGER, E. V., SABNIS, A. & EDWARDS, A. M. 2022. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology168.

43. LIMA, L. M., DA SILVA, B. N. M., BARBOSA, G. & BARREIRO, E. J. 2020. β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry, 208, 112829.

44. LIRAS, P. & MARTÍN, J. 2009. β-Lactam antibiotics.

45. LOMAKIN, I. B., DEVARKAR, S. C., PATEL, S., GRADA, A. & BUNICK, C. G. 2023. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Research51, 2915-2930.

46. MCGEER, A., FLEMING, C., GREEN, K. & LOW, D. 2001. Antimicrobial resistance in Ontario: are we making progress. Laboratory Proficiency Testing Program Newsletter, 293, 1-4.

47. MEHTA, D. & SHARMA, A. K. 2016. Cephalosporins: A review on imperative class of antibiotics. Inventi Rapid: Molecular Pharmacology1, 1-6.

48. MLYNARCZYK-BONIKOWSKA, B., KOWALEWSKI, C., KROLAK-ULINSKA, A. & MARUSZA, W. 2022. Molecular mechanisms of drug resistance in Staphylococcus aureus. International journal of molecular sciences23, 8088.

49. NAGANATHAN, A. & CULVER, G. M. 2022. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annual Review of Microbiology, 76, 193-210.

50. NISSEN, P., HANSEN, J., BAN, N., MOORE, P. B. & STEITZ, T. A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930.

51. OLADEMEHIN, O. P. 2021. Computational Study of Glycopeptide Antibiotics Interactions with Staphylococcus aureus Peptidoglycan. Baylor University.

52. PAPP-WALLACE, K. M., ENDIMIANI, A., TARACILA, M. A. & BONOMO, R. A. 2011. Carbapenems: past, present, and future. Antimicrobial agents chemotherapy 55, 4943-4960.

53. PARK, J. T. & UEHARA, T. 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiology Molecular Biology Reviews 72, 211-227.

54. PARK TALARO, K., COWAN, M. K. & CHESS, B. 2002. Foundations in microbiology.

55. PARSELS, K. A., MASTRO, K. A., STEELE, J. M., THOMAS, S. J. & KUFEL, W. D. 2021. Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. Journal of Antimicrobial Chemotherapy, 76, 1379-1391.

56. PICHKUR, E. B., PALESKAVA, A., TERESHCHENKOV, A. G., KASATSKY, P., KOMAROVA, E. S., SHIRIAEV, D. I., BOGDANOV, A. A., DONTSOVA, O. A., OSTERMAN, I. A. & SERGIEV, P. V. 2020. Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the E. coli 70S ribosome. RNA 26, 715-723.

57. POIREL, L., BRINAS, L., VERLINDE, A., IDE, L. & NORDMANN, P. 2005. BEL-1, a novel clavulanic acid-inhibited extended-spectrum β-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrobial agents chemotherapy 49, 3743-3748.

58. RAMOS-MARTÍN, F. & D’AMELIO, N. 2023. Drug Resistance: An Incessant Fight against Evolutionary Strategies of Survival. Microbiology Research14, 507-542.

59. RUSSELL, A. D. 2004. Types of antibiotics and synthetic antimicrobial agents. Hugo Russell's Pharmaceutical Microbiology 152-186.

60. SÁNCHEZ, A. R., ROGERS III, R. S. & SHERIDAN, P. 2004. Tetracycline and other tetracycline‐derivative staining of the teeth and oral cavity. International journal of dermatology, 43, 709-715.

61. SCHLEGEL, H. G. & ZABOROSCH, C. 1993. General microbiology, Cambridge university press.

62. SYKES, R. & BONNER, D. 1985. Discovery and development of the monobactams. Reviews of Infectious Diseases, 7, S579-S593.

63. SYKES, R., CIMARUSTI, C., BONNER, D., BUSH, K., FLOYD, D., GEORGOPAPADAKOU, N., KOSTER, W., LIU, W., PARKER, W. & PRINCIPE, P. 1981. Monocyclic β-lactam antibiotics produced by bacteria. Nature 291, 489-491.

64. TORRES, J. A., VILLEGAS, M. V. & QUINN, J. P. 2007. Current concepts in antibiotic-resistant gram-negative bacteria. Expert review of anti-infective therapy 5, 833-843.

65. UDDIN, T. M., CHAKRABORTY, A. J., KHUSRO, A., ZIDAN, B. R. M., MITRA, S., EMRAN, T. B., DHAMA, K., RIPON, M. K. H., GAJDÁCS, M. & SAHIBZADA, M. U. K. 2021. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of infection public health14, 1750-1766.

66. UMOH, H. P. 2022. CHARACTERIZATION OF staphylococcus aureus ISOLATED FROM DOOR HANDLES IN THE COLLEGE OF HUMANITIES, MANAGEMENT AND SOCIAL SCIENCES, MOUNTAIN TOP UNIVERSITY.

67. VAN HOEK, A., MEVIUS, D., GUERRA, B., MULLANY, P. R. & AARTS, H. 2011. Acquired antibiotic resistance genes: an overview. . Frontiers in Microbiology, 2, 1-27.

68. VOEDTS, H., KENNEDY, S. P., SEZONOV, G., ARTHUR, M. & HUGONNET, J.-E. 2022. Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams. Nature Communications13, 7962.

69. WALSH, C. 2003. Antibiotics: actions, origins, resistance, American Society for Microbiology (ASM).

70. YOUNG, K., PAINTER, R. E., RAGHOOBAR, S. L., HAIRSTON, N. N., RACINE, F., WISNIEWSKI, D., BALIBAR, C. J., VILLAFANIA, A., ZHANG, R. & SAHM, D. F. 2019. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC microbiology 19, 1-14.

Downloads

Published

2024-09-26

How to Cite

Jabbar, B. M., Falah, A. N., Murad, S. M., & Bilal, M. S. (2024). ASSESSMENT OF ANTIBIOTIC RESISTANCE IN BACTERIA ISOLATED FROM RADIOGRAPHY ROOMS IN MOSUL HOSPITALS. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 4(9), 453–469. Retrieved from https://inovatus.es/index.php/ejmmp/article/view/4102