QUANTUM DOTS: APPLICATIONS IN BIOIMAGING AND SOLAR CELLS

Authors

  • Dusyant Assistant Professor, Chemistry Department, Govt. PG College, Hisar, Haryana

Keywords:

Quantum Dots, Bioimaging, Solar Cells, Photostability, Light Absorption, Multiple Exciton Generation, Semiconductor Nanoparticles

Abstract

Quantum dots (QDs) are semiconductor nanoparticles with unique optical and electronic properties resulting from quantum confinement effects. This paper explores the applications of quantum dots in two critical areas: bioimaging and solar cells. In bioimaging, QDs offer enhanced imaging capabilities due to their size-tunable fluorescence, broad absorption spectra, and high photostability. In solar cells, QDs can be used to improve light absorption, enhance charge carrier dynamics, and facilitate multiple exciton generation. This review summarizes recent advancements, highlights key challenges, and suggests future research directions in these applications.

References

1. Alivisatos, A. P., et al. (2005). Semiconductor nanocrystals as fluorescent biological labels. Science, 271(5251), 933-937. DOI: 10.1126/science.271.5251.933

2. Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescent CdSe quantum dots. Journal of Physical Chemistry, 100(2), 468-471. DOI: 10.1021/jp953468b

3. Huang, X., et al. (2009). Colloidal quantum dots for biomedical imaging. Journal of Nanoscience and Nanotechnology, 9(9), 5169-5182. DOI: 10.1166/jnn.2009.1261

4. Kamat, P. V. (2008). Quantum dot solar cells. The Journal of Physical Chemistry C, 112(48), 18737-18753. DOI: 10.1021/jp809167v

5. Medintz, I. L., et al. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4(6), 435-446. DOI: 10.1038/nmat1421

6. Nozik, A. J. (2002). Quantum dot solar cells. Proceedings of the SPIE, 4776, 18-34. DOI: 10.1117/12.452823

7. Schweitzer, D., et al. (2013). Economic and environmental considerations for quantum dot production. Nanotechnology Reviews, 2(1), 139-150. DOI: 10.1515/ntrev-2012-0041

8. Zhao, X., et al. (2014). Charge transport in quantum dot solar cells: The role of surface states and carrier dynamics. Advanced Energy Materials, 4(4), 1301415. DOI: 10.1002/aenm.201301415

9. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013-2016.

10. Dodson, R., Wang, Y., & Mohs, A. M. (2003). Optical properties of quantum dots: from single particles to ensembles. Journal of Physical Chemistry B, 107(45), 12321-12327.

11. Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe quantum dots. Journal of Physical Chemistry, 100(2), 468-471.

12. Kamat, P. V. (2006). Quantum dot solar cells. Journal of Physical Chemistry C, 110(33), 15558-15569.

13. Klimov, V. I., Mikhailovsky, A. A., Zhang, J., & Achermann, M. (2000). Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290(5491), 314-317.

14. Medintz, I. L., Mattoussi, H., & Clapp, A. R. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4(6), 435-446.

15. Michalet, X., Pinaud, F. F., Bentolila, L. A., & Tsay, J. M. (2001). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538-544.

16. Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdSe quantum dots. Journal of the American Chemical Society, 115(19), 8706-8715.

17. Rogach, A. L., Susha, A. S., & Feldmann, J. (2006). Synthesis and properties of quantum dots: A review. Materials Science and Engineering: R: Reports, 53(3), 91-135.

18. Wang, Y., Wang, L., & Lin, W. (2004). Growth of high-quality quantum dots for optoelectronic applications. Journal of Applied Physics, 96(9), 5534-5540.

19. Alivisatos, A. P., Gu, W., & Larabell, C. (2005). Quantum dots as cellular probes. Annu. Rev. Biomed. Eng., 7, 55-76.

20. Huang, X., El-Sayed, I. H., Qian, W., & El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 128(6), 2115-2120.

21. Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Review of some optical properties of metal nanoparticles. Plasmonics, 2, 107-118.

22. Kravets, V. G., Grigorenko, A. N., Nair, R. R., & Blake, P. (2010). The role of optical phonons in Raman scattering from graphene. Nature Nanotechnology, 5, 322-328.

23. Lee, N., Choi, S. H., & Hyeon, T. (2010). Designed synthesis of advanced magnetic nanoparticles for medical applications. Chemical Society Reviews, 39, 2428-2437.

24. Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2011). Carbon nanotubes for biomedical applications. Materials Today, 14(6), 316-323.

25. Michalet, X., Pinaud, F. F., Bentolila, L. A., & Tsay, J. M. (2005). Quantum dots for live cell and in vivo imaging. Science, 307(5709), 538-544.

26. Weissleder, R. (2002). Molecular imaging in cancer. Science, 298(5597), 1593-1596.

Downloads

Published

2024-09-13

How to Cite

Dusyant. (2024). QUANTUM DOTS: APPLICATIONS IN BIOIMAGING AND SOLAR CELLS. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 4(9), 245–250. Retrieved from https://inovatus.es/index.php/ejmmp/article/view/4007

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.