

http://innovatus.es/index.php/ejbsos

The Educational Effectiveness of Methods for Solving Functional Equations

Saipnazarov Shaylovbek Aktamovich Associate Professor, Candidate of Pedagogical Sciences, Tashkent State University of Economics, Uzbekistan

OrtikovaMalika Turaboyevna Senior lecturer of Tashkent State University of Economics, Uzbekistan

Mirzamurodov Oltinbek Sultonali o'g'li

Assistant, Tashkent State University of Economics, Uzbekistan

Abstract: In this article, we examined one of the methods for solving functional equations, using the most important concept of modern algebra- the concept of a group. And in the article we also showed examples that many functions are obtained from basic ones using compositions and algebraic operations.

Key words: Composition of a function, group, linear system of equations, set of linear functions, composition operation.

Introducsion. You are familiar with functional equations, although you may not know that they are called that.Thus,it is the functions

$$
f(x) = f(-x), f(-x) = -f(x), f(x + a) = f(x)
$$

that define such properties of functions as evenness,oddnes,and periodicity.

In general, a functional equation is a relation from which you need to find an unknown function.For example,

$$
f(x+1) + f(x) = x,
$$

\n
$$
2f(1-x) - xf(x) = -1,
$$

\n
$$
xf(x) + f\left(\frac{4}{2-x}\right) = x.
$$

In this article we will consider one of the methods for solving functional equations,using the most important concept of modern algebra-the concept of group.

Composition of function.

Many functions are obtained from basic ones using compositions and algebraic operations.So,the function $f(x) = sin(2x + 1)$ a composition of the linear function $g(x) = 2x + 1$ and trigonometric function $h(x) = \sin x$, i.e. $f(x) = h(g(x)) = (h \circ g)(x)$.

The function $f(x) = \ell g \arcsin x$ is obtained as a result of the composition of the functions $g(x) =$ arcsinx and $h(x) = \lg x$. Note that the domain of X from D(g) for which $g(x) \in D(h)$. In the last example D(g)=[-1;1], D(h)=(0;∞). Since *arcsinx* at $x \in (0, 1]$, that $D(f) = (0, 1]$.

If we take the composition of these same functions in reverse order, that is, the function $f(x) =$ arcsinlgx, then we get $D(f) = \left[\frac{1}{\mu}\right]$ $\frac{1}{10}$; 1]

The composition of the fractional linear functions $g(x) = \frac{-2x+1}{2x+2}$ $\frac{-2x+1}{3x+2}$ and

$$
h(x) = \frac{3x-2}{-x+4}
$$
 is the function $f(x) = h(g(x)) = \frac{3 \cdot \frac{-2x+1}{3x+2} - 2}{- \frac{-2x+1}{3x+2} + 4} = \frac{-12x-1}{14x+7}$,

$$
x \neq -\frac{2}{3}
$$
 Here $D(f) = R \setminus \{-\frac{2}{3}; -\frac{1}{2}\}$

As a rule, $f \circ g \neq g \circ f$. At the same time, for any functions $(f \circ g) \circ h = f \circ (g \circ h).$

which directly follows from the definition of composition.

Let's solve the following problem **Task-1.** Find all functions $y = f(x)$ such that

$$
2f(-x) - xf(x) = -1(1)
$$

Solution.Suppore that there is a function $f(x)$ that satisfies this equation.

Replacing X with 1-X we get

$$
2f(x) - (1 - x)f(1 - x) = -1(2)
$$

 $f(x) = f_1$, $f(1 - x) = f_2$ then we get a system of equations

$$
\begin{cases} 2f_1 - (1 - x)f_2 = -1 \\ -xf_1 + 2f_2 = -1 \end{cases}
$$

Solve the system using Cramer's rule

$$
\Delta = \begin{vmatrix} 2 & -(1-x) \\ -x & 2 \end{vmatrix} = 4 - x(1-x) = x^2 - x + 4
$$

$$
\Delta_1 = \begin{vmatrix} -1 & -(1-x) \\ -1 & 2 \end{vmatrix} = -2 - (1-x) = -3 + x
$$

$$
f_1 = f(x) = \frac{\Delta}{\Delta_1} = \frac{x-3}{x^2 - x + 4}
$$

By direct Verification we convinced that the resulting function satisfies equation (1).We reduced the solution of the functional equation to the solution of a system of two linear equations with two unknowns.

Let's now consider a more complex problem.**Task-2** Solve the equations

$$
xf(x) + 2f\left(\frac{x-1}{x+1}\right) = 1\ (3)
$$

Solution. Let's try to act in the same way as in the first case .Let's replace

$$
x \to \frac{x-1}{x+1}
$$
. We get $\frac{x-1}{x+1}f\left(\frac{x-1}{x+1}\right) + 2f\left(-\frac{1}{x}\right) = 1$ (4)

Along with the expressions $f(x)$ and $f\left(\frac{x-1}{x+1}\right)$ $\left(\frac{x-1}{x+1}\right)$, we now have a new unknown $f\left(-\frac{1}{x}\right)$ $\frac{1}{x}$). Let's try to apply one more substitution to (3). We have

$$
-\frac{1}{x}f\left(-\frac{1}{x}\right) + 2f\left(\frac{x+1}{1-x}\right) = 1 (5)
$$

In addition to $\left(-\frac{1}{x}\right)$, the undesirable expression $f\left(\frac{x+1}{1-x}\right)$ appeared in the equation. Well, let's try
substituting $x \to \frac{x+1}{1-x}$ into (3) and finally, luck. We get the equation.

$$
\frac{x+1}{1-x}f\left(\frac{x+1}{1-x}\right) + 2f(x) = 1 (6)
$$

Vol. 4 No. 11 (Nov - 2024): EJBSOS

A system of four linear equations (3)-(6) with four unknowns $f(x)$, $f\left(\frac{x-1}{x+1}\right)$ $\left(\frac{x-1}{x+1}\right)$, $f\left(-\frac{1}{x}\right)$ $\frac{1}{x}$ and $f\left(\frac{x+1}{1-x}\right)$ $\frac{x+1}{1-x}$ has been constructed.Let's put

$$
f(x) = x_1, f\left(\frac{x-1}{x+1}\right) = x_2, f\left(-\frac{1}{x}\right) = x_3, f\left(\frac{x+1}{1-x}\right) = x_4
$$

then we get the following system of equations

$$
\begin{cases}\nx \cdot x_2 + 2x_2 = 1 \\
x - 1 \\
\overline{x + 1} \cdot x_2 + 2x_3 = 1 \\
\frac{1}{x} \cdot x_3 + 2x_4 = 1 \\
\frac{x + 1}{x - 1} \cdot x_4 + 2x_1 = 1\n\end{cases}
$$

Solve the system using Cramer's rule

$$
\Delta = \begin{vmatrix} x & 2 & 0 & 0 \\ 0 & \frac{x-1}{x+1} & 2 & 0 \\ 0 & 0 & -\frac{1}{x} & \frac{x+1}{2} \\ 2 & 0 & 0 & \frac{x+1}{1-x} \end{vmatrix} = x \cdot \begin{vmatrix} \frac{x-1}{x+1} & 2 & 0 \\ 0 & -\frac{1}{x} & 2 \\ 0 & 0 & \frac{x+1}{1-x} \end{vmatrix} = x \cdot \frac{1}{x} \cdot 2 \cdot 8 = -15
$$

$$
\Delta_{1} = \begin{vmatrix}\n1 & 2 & 0 & 0 \\
1 & \frac{x-1}{x+1} & 2 & 0 \\
1 & 0 & -\frac{1}{x} & 2 \\
1 & 0 & 0 & \frac{x+1}{1-x}\n\end{vmatrix} = \begin{vmatrix}\n\frac{x-1}{x+1} & 2 & 0 \\
0 & -\frac{1}{x} & 2 \\
0 & 0 & \frac{x+1}{1-x}\n\end{vmatrix} - 2 \cdot \begin{vmatrix}\n1 & 2 & 0 \\
1 & -\frac{1}{x} & 2 \\
1 & 0 & \frac{x+1}{1-x}\n\end{vmatrix} = \frac{1}{x} + 2 \cdot \frac{x+1}{x(1-x)} - 8 + 4 \cdot \frac{x+1}{1-x} - 8 + 4 \cdot \frac
$$

Verification shows that
$$
f(x)
$$
 satisfies equation (3)

Groups appear.

Let's try to figure out why we were able to solve the equations of the previous paragraph. Let's consider another equation

$$
f(x+1) + f(x) = x
$$

It looks no more scary that equation (3), but all attempst to solve it in the sam way will in vain: when replacing $x \to x + 1$, "the unknown" $f(x + 2)$ appears and so on. The chain does not close: we will never get a linear systems.

Recall that when solving the first equation, we performed the substitution $x \to 1 - x$. In this case, $1 - x \rightarrow x$. That is in relation to the composition operation they behave like this

$$
g_1 \circ g_2 = g_2 \circ g_1 = g_2, g_2 \circ g_2 = g_2, g_1 \circ g_1 = g_1
$$

Consider the "multiplication" table (at the intersection of row number i and column number j there is $g_i \circ g_j$).

In each row and each column of this table there are both g_1 and g_2 .

Let us now assume that we need to solve the equation

$$
a(x)f(x) + b(x)f(1 - x) = c(x) (7)
$$

where a ,b, c are same functions.It is clear that by substituting $x \to 1 - x$, we get the equation

$$
a(1-x)f(1-x) + b(1-x)f(x) = c(1-x)
$$
 (8)

Which together with equation (7) forms a linear system with respect to the functions $f(x)$ and $f(1 - x)$. Further, the solution will develop in the same way as when solving

Problem 1.In the second example considered, we made substitutions

$$
x \to \frac{x-1}{x+1}, x \to -\frac{1}{x}, x \to \frac{x+1}{1-x}
$$

that is , we dealt with the functions

$$
g_1(x) = x
$$
, $g_2(x) = \frac{x-1}{x+1}$, $g_3(x) = -\frac{1}{x}$, $g_4(x) = \frac{x+1}{1-x}$

Let's see how the functions g_1 , g_2 , g_3 , g_4 behave in relation to the composition operation. Let's create table 2 ,similar to table 1 (at the intersection of the i-th row and the k-th column ,write $g_i \circ$ $g_j)$

This table is symmetrical with respect to its diagonal (this means that $g_i \circ g_k = g_k \circ g_i$ for and k and *i*).

Moreover, all g_i functions appear in every row and every column equally once, and finally, it is easy to notice that

$$
g_3 = g_2^2
$$
, $g_4 = g_2^3$, $g_1 = g_2^4$. Here $g_2^i = g_2 \circ g_2 \circ g_2 \circ g_2 \dots \circ g_2$

Thus, the system of function $G = \{g_1, g_2, g_3, g_4\}$ has the following properties:

- 1) It is closed under composition;
- 2) Among there functions there is an identity mapping $g_1(x) = x$;
- 3) Each of the functions g_i has an inverse

$$
g_i^{-1}: g_1^{-1} = g_1, g_2^{-1} = g_4, g_3^{-1} = g_3, g_4^{-1} = g_2
$$

The system of function $G = \{g_1, g_2\}$ from example 1 has the same properties.

If we were now asked to solve any functional equation of the from

$$
a(x)f(x) + b(x)f\left(\frac{x-1}{x+1}\right) + c(x)f\left(-\frac{1}{x}\right) + d(x)f\left(\frac{x+1}{1-x}\right) = h(x), (9)
$$

we would do this by making the substitutions $x \to g_2(x)$, $x \to g_3(x)$, $x \to g_4(x)$,

after which we would arrive at a linear system.

For example, let's write down what comes of (9) after replacing $x \to g_2(x)$ More over, $g_2(x) \to g_1(x)$ $g_3(x)$, $g_3(x) \rightarrow g_4(x)$, $g_4(x) \rightarrow g_1(x)$, so we get the equation

$$
a\left(\frac{x-1}{x+1}\right) f\left(\frac{x-1}{x+1}\right) + b\left(\frac{x-1}{x+1}\right) f\left(-\frac{1}{x}\right) + c\left(\frac{x-1}{x+1}\right) f\left(\frac{x+1}{x+1}\right) + d\left(\frac{x-1}{x+1}\right) f(x) = h\left(\frac{x-1}{x+1}\right)
$$

Now let's give the following definition.

Definition. An arbitrary set G of functions defined on some set M is called a group under the operation ∘, if it has the same properties as the system (g_1, g_2, g_3, g_4) , that is,

- 1. For any two functions $f \in G$, $g \in G$, their composition $f \circ g$ is also belongs to G.
- 2. The function $e(x) = x$ belongs to G.
- 3. For every function $f \in G$ belongs is an inverse function f^{-1} , which also belongs to G.

Conclusion.

We can now outline a general method for solving certain functional equations using the concept of a group of functions.Let in the functional equation

$$
a_1 f(g_1) + a_2 f(g_2) + \ldots + a_n f(g_n) = b \tag{10}
$$

The expressions under the sign of the unknown function $f(x)$ be elements of *a* group G consisting of "n" function: $g_1(x) = x$, $g_2(x)$, ..., $g_n(x)$, and the coefficients of equation (10) $a_1, a_2, ..., a_n$, b are some functions of x. Let's assume that equation (10) has a solution. Let's replace $x \to g_2(x)$.

As a result, the function sequence $g_1, g_2, ..., g_4$ will transform into the sequence $g_1 \circ g_2, g_2 \circ g_1$ g_2 , …, $g_n \circ g_2$, again consisting of all elements of the group.

Therefore, the "unknowns" $f(g_1)$, $f(g_2)$, ..., $f(g_n)$ will be rearranged and we will obtain a new linear equation of the same form as (10).Next, in equation (10) we make the substitutions $x \rightarrow$ $g_3(x)$, $x \to g_4(x)$, ..., $x \to g_n(x)$, after which we obtain a system of n linear equations, that should be solved.If there are solutions,than we must also check to make sure that they satisfy equation (10).

As an example, consider the equation

$$
2xf(x) + f\left(\frac{1}{1-x}\right) = 2x(11)
$$

The set of functions $g_1 = x$, $g_2 = \frac{1}{1-x}$ $\frac{1}{1-x}$, $g_3 = \frac{x-1}{x}$ $\frac{f(x)}{f(x)}$ forms a group with a multiplication table,

Replacing x in equation (11) by $\frac{1}{1-x}$ and $\frac{x-1}{x}$, we obtain the system

$$
\begin{cases}\n2xf_1 + f_2 = 2x \\
\frac{2}{1-x}f_2 + f_3 = \frac{2}{1-x} \\
2(x-1) f_2 + f_1 = \frac{2(x-1)}{x}\n\end{cases}
$$

where $f_1 = f(x)$, $f_2 = f(g_2(x)) = f\left(\frac{1}{1-x}\right)$ $\left(\frac{1}{1-x}\right)$, $f_3 = f(g_3(x)) = f\left(\frac{x-1}{x}\right)$ $\frac{-1}{x}$), solving which we get by checking $f_1 = f(x) = \frac{6x-2}{7x}$ $\frac{x-2}{7x}$ at $x \neq -1$, $x \neq 0$.

In conclusion, we give some examples of groups of functions that can be used in solving functional equations.

$$
G_1 = \{x, a - x\}, G_2 = \{x, \frac{a}{x}\} \text{ (here and further } a \neq 0) \quad G_3 = \{x, \frac{a}{x}, -x, -\frac{a}{x}\} \quad , \quad G_4 = \{x, \frac{1}{x}, -x, -\frac{1}{x}, \frac{x-1}{x+1}, \frac{1-x}{x+1}, \frac{x+1}{x-1}, \frac{x+1}{1-x}\} \quad , \quad G_5 = \{x, \frac{a^2}{x}, a - x, \frac{ax}{x-a}, \frac{ax-x^2}{x}, \frac{a^2}{a-x}\}, \quad G_6 = \{x, \frac{x\sqrt{3}-1}{x+\sqrt{3}}, \frac{x-\sqrt{3}}{x\sqrt{3}+1}, -\frac{1}{x}, \frac{x+\sqrt{3}}{1-x\sqrt{3}}, \frac{x\sqrt{3}+1}{\sqrt{3}-x}\}.
$$

Abstract. In this article, we examined one of the methods for solving functional equations, using the most important concept of modern algebra- the concept of a group . And in the article we also showed examples that many functions are obtained from basic ones using compositions and algebraic operations.

Keywords. Composition of a function, group, linear system of equations, set of linear functions, composition operation.

Literature.

- 1. Андреев А.А , Кузьмин Ю.Н, Савин А.Н, Саушкин И.Н, Функианальные уравнения.Самара: В мире науки ,1999.
- 2. Бродский Я.С., Слипенко А.К.,Функциональные уравнения –К: Винза школа. Головное издательство,1983-96c
- 3. Илвин В.А.Методы решения функциональных уравнения // Соросовский образовательный журнал, 2001 N2.C. 116-120
- 4. Сабитов К. Б. Функциональные, дифференциальные и интегральные уравнения.-M: " Высшая школа",2005 190-199 ct.