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Abstract: In this article, we examined one of the methods for solving functional equations, 

using the most important concept of modern algebra- the concept of a group. And in the article we 

also showed examples that many functions are obtained from basic ones using compositions and 

algebraic operations. 
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Introducsion. You are familiar with functional equations, although you may not know that they 

are called that.Thus,it is the functions  

𝑓(𝑥) = 𝑓(−𝑥), 𝑓(−𝑥) = −𝑓(𝑥) , 𝑓(𝑥 + 𝑎) = 𝑓(𝑥) 

that define such properties of functions as evenness,oddnes,and periodicity. 

In general, a functional equation is a relation from which you need to find an unknown 

function.For example, 

𝑓(𝑥 + 1) + 𝑓(𝑥) = 𝑥 , 

2𝑓(1 − 𝑥) − 𝑥𝑓(𝑥) = −1, 

𝑥𝑓(𝑥) + 𝑓 (
4

2 − 𝑥
) = 𝑥. 

In this article we will consider one of the methods for solving functional equations,using the most 

important concept of modern algebra-the concept of group. 

Composition of function. 

Many functions are obtained from basic ones using compositions and algebraic operations.So,the 

function 𝑓(𝑥) = sin(2𝑥 + 1) a composition of the linear function 𝑔(𝑥) = 2𝑥 + 1 and 

trigonometric function ℎ(𝑥) = 𝑠𝑖𝑛𝑥 ,i,c. 𝑓(𝑥) = ℎ(𝑔(𝑥)) = (ℎ ∘ 𝑔)(𝑥). 

The function 𝑓(𝑥) = 𝑙𝑔𝑎𝑟𝑐𝑠𝑖𝑛𝑥 is obtained as a result of the composition of the functions 𝑔(𝑥) =
𝑎𝑟𝑐𝑠𝑖𝑛𝑥 and ℎ(𝑥) = 𝑙𝑔𝑥. Note that the domain of X from D(g) for which 𝑔(𝑥) ∈ 𝐷(ℎ). In the last 

example D(g)=[-1;1] , D(h)=(0;∞).Since 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 at 𝑥 ∈ (0; 1], that 𝐷(𝑓) = (0; 1]. 

If we take the composition of these same functions in reverse order, that is, the function 𝑓(𝑥) =

𝑎𝑟𝑐𝑠𝑖𝑛𝑙𝑔𝑥, then we get 𝐷(𝑓) = [
1

10
 ; 1] 
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The composition of the fractional linear functions 𝑔(𝑥) =
−2𝑥+1

3𝑥+2
 and 

 ℎ(𝑥) =
3𝑥−2

−𝑥+4
 is the function 𝑓(𝑥) = ℎ(𝑔(𝑥)) =

3∗
−2𝑥+1

3𝑥+2
−2

−
−2𝑥+1

3𝑥+2
+4

=
−12𝑥−1

14𝑥+7
 , 

 𝑥 ≠ −
2

3
 Here 𝐷(𝑓) = 𝑅\{−

2

3
 ; −

1

2
} 

As a rule,𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓.At the same time,for any functions  

(𝑓 ∘ 𝑔) ∘ ℎ = 𝑓 ∘ (𝑔 ∘ ℎ), 

which directly follows from the definition of composition. 

Let’s solve the following problem Task-1. Find all functions 𝑦 = 𝑓(𝑥) such that  

 2𝑓(−𝑥) − 𝑥𝑓(𝑥) = −1 (1) 

Solution.Suppore that there is a function 𝑓(𝑥) that satisfies this equation. 

Replacing X with 1-X we get  

2𝑓(𝑥) − (1 − 𝑥)𝑓(1 − 𝑥) = −1 (2) 

𝑓(𝑥) = 𝑓1 , 𝑓(1 − 𝑥) = 𝑓2 then we get a system of equations  

{
2𝑓1 − (1 − 𝑥)𝑓2 = −1
−𝑥𝑓1 + 2𝑓2 = −1

 

 

Solve the system using Cramer’s rule 

∆= |
2 −(1 − 𝑥)
−𝑥 2

| = 4 − 𝑥(1 − 𝑥) = 𝑥2 − 𝑥 + 4 

∆1= |
−1 −(1 − 𝑥)
−1 2

| = −2 − (1 − 𝑥) = −3 + 𝑥 

𝑓1 = 𝑓(𝑥) =
∆

∆1
=

𝑥 − 3

𝑥2 − 𝑥 + 4
 

By direct Verification we convinced that the resulting function satisfies equation (1).We reduced 

the solution of the functional equation to the solution of a system of two linear equations with two 

unknowns. 

Let’s now consider a more complex problem.Task-2 Solve the equations  

𝑥𝑓(𝑥) + 2𝑓 (
𝑥−1

𝑥+1
) = 1 (3) 

Solution. Let’s try to act in the same way as in the first case .Let’s replace  

 𝑥 →
𝑥−1

𝑥+1
. We get 

𝑥−1

𝑥+1
𝑓 (

𝑥−1

𝑥+1
) + 2𝑓 (−

1

𝑥
) = 1 (4) 

Along with the expressions 𝑓(𝑥) and 𝑓 (
𝑥−1

𝑥+1
), we now have a new unknown 𝑓 (−

1

𝑥
). Let’s try to 

apply one more substitution to (3). We have  

−
1

𝑥
𝑓 (−

1

𝑥
) + 2𝑓 (

𝑥+1

1−𝑥
) = 1 (5) 

In addition to (−
1

𝑥
) , the undesirable expression 𝑓 (

𝑥+1

1−𝑥
) appeared in the equation. Well, let’s try 

substituting 𝑥 →
𝑥+1

1−𝑥
 into (3) and finally, luck.We get the equation. 

𝑥+1

1−𝑥
𝑓 (

𝑥+1

1−𝑥
) + 2𝑓(𝑥) = 1 (6) 
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A system of four linear equations (3)-(6) with four unknowns 𝑓(𝑥), 𝑓 (
𝑥−1

𝑥+1
) , 𝑓 (−

1

𝑥
) and 𝑓 (

𝑥+1

1−𝑥
) 

has been constructed.Let’s put  

𝑓(𝑥) = 𝑥1 , 𝑓 (
𝑥 − 1

𝑥 + 1
) = 𝑥2 ,  𝑓 (−

1

𝑥
) = 𝑥3 , 𝑓 (

𝑥 + 1

1 − 𝑥
) = 𝑥4 

then we get the following system of equations 

{
  
 

  
 

𝑥 ∙ 𝑥2 + 2𝑥2 = 1
𝑥 − 1

𝑥 + 1
∙ 𝑥2 + 2𝑥3 = 1

−
1

𝑥
∙ 𝑥3 + 2𝑥4 = 1

𝑥 + 1

𝑥 − 1
∙ 𝑥4 + 2𝑥1 = 1

 

Solve the system using Cramer’s rule 

∆= ||

𝑥 2  0 0

0
0
2

𝑥−1

𝑥+1

0
0

2

−
1

𝑥

0

0
2
𝑥+1

1−𝑥

||=𝑥 ∙ |
|

𝑥−1

𝑥+1
2 0

0 −
1

𝑥
2

0 0
𝑥+1

1−𝑥

|
|-2 ∙ |

0 2 0

0 −
1

𝑥
2

2 0
𝑥+1

1−𝑥

|= 𝑥 ∙
1

𝑥
-2∙8=-15 

 

∆1= ||

1 2  0 0

1
1
1

𝑥−1

𝑥+1

0
0

2

−
1

𝑥

0

0
2
𝑥+1

1−𝑥

||=|
|

𝑥−1

𝑥+1
2 0

0 −
1

𝑥
2

0 0
𝑥+1

1−𝑥

|
|- 2 ∙ |

1 2 0

1 −
1

𝑥
2

1 0
𝑥+1

1−𝑥

|= 
1

𝑥
+2∙

𝑥+1

𝑥(1−𝑥)
 -8+ 

4∙
𝑥+1

1−𝑥
=
12𝑥2−3𝑥+3

𝑥(1−𝑥)
 

𝑥1 =
∆1

∆
=

12𝑥2−3𝑥+3

−15𝑥(1−𝑥)
=

4𝑥2−𝑥+1

5𝑥(𝑥−1)
 (𝑥 ≠ −1, 𝑥 ≠ 0 , 𝑥 ≠ 1.) 

Verification shows that 𝑓(𝑥) satisfies equation (3) 

Groups appear. 

Let’s try to figure out why we were able to solve the equations of the previous paragraph.Let’s 

consider another equation  

𝑓(𝑥 + 1) + 𝑓(𝑥) = 𝑥 

It looks no more scary that equation (3), but all attempst to solve it in the sam way will in vain: 

when replacing 𝑥 → 𝑥 + 1, “the unknown” 𝑓(𝑥 + 2) appears and so on. The chain does not close: 

we will never get a linear systems. 

Recall that when solving the first equation, we performed the substitution 𝑥 → 1 − 𝑥 .In this 

case,1 − 𝑥 → 𝑥.That is in relation to the composition operation they behave like this  

𝑔1 ∘ 𝑔2 = 𝑔2 ∘ 𝑔1 = 𝑔2 , 𝑔2 ∘ 𝑔2 = 𝑔2 , 𝑔1 ∘ 𝑔1 = 𝑔1 

Consider the “multiplication” table (at the intersection of row number i and column number j there 

is 𝑔𝑖 ∘ 𝑔𝑗). 

∘ 𝑔1 𝑔2 

𝑔1 𝑔1 𝑔2 

𝑔2 𝑔2 𝑔1 

In each row and each column of this table there are both 𝑔1 and 𝑔2. 
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Let us now assume that we need to solve the equation 

𝑎(𝑥)𝑓(𝑥) + 𝑏(𝑥)𝑓(1 − 𝑥) = 𝑐(𝑥) (7) 

where a ,b, c are same functions.It is clear that by substituting 𝑥 → 1 − 𝑥, we get the equation 

𝑎(1 − 𝑥)𝑓(1 − 𝑥) + 𝑏(1 − 𝑥)𝑓(𝑥) = 𝑐(1 − 𝑥) (8) 

Which together with equation (7) forms a linear system with respect to the functions 𝑓(𝑥) and 

𝑓(1 − 𝑥).Further, the solution will develop in the same way as when solving  

Problem 1.In the second example considered, we made substitutions 

𝑥 →
𝑥 − 1

𝑥 + 1
 , 𝑥 → −

1

𝑥
 , 𝑥 →

𝑥 + 1

1 − 𝑥
 

that is , we dealt with the functions 

𝑔1(𝑥) = 𝑥 , 𝑔2(𝑥) =
𝑥 − 1

𝑥 + 1
 , 𝑔3(𝑥) = −

1

𝑥
 , 𝑔4(𝑥) =

𝑥 + 1

1 − 𝑥
 

Let’s see how the functions 𝑔1, 𝑔2, 𝑔3, 𝑔4 behave in relation to the composition operation.Let’s 

create table 2 ,similar to table 1 (at the intersection of the i-th row and the k-th column ,write 𝑔𝑖 ∘
𝑔𝑗)  

∘ 𝑔1 𝑔2 𝑔3 𝑔4 

𝑔1 𝑔1 𝑔2 𝑔3 𝑔4 

𝑔2 𝑔2 𝑔3 𝑔4 𝑔1 

𝑔3 𝑔3 𝑔4 𝑔1 𝑔2 

𝑔4 𝑔4 𝑔1 𝑔2 𝑔3 

This table is symmetrical with respect to its diagonal (this means that 𝑔𝑖 ∘ 𝑔𝑘 = 𝑔𝑘 ∘ 𝑔𝑖 for and k 

and i). 

Moreover, all 𝑔𝑖 functions appear in every row and every column equally once, and finally,it is 

easy to notice that  

𝑔3 = 𝑔2
2 , 𝑔4 = 𝑔2

3 , 𝑔1 = 𝑔2
4. Here 𝑔2

𝑖 = 𝑔2 ∘ 𝑔2 ∘ 𝑔2 ∘ 𝑔2… .∘ 𝑔2 

Thus, the system of function 𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4} has the following properties: 

1) It is closed under composition; 

2) Among there functions there is an identity mapping 𝑔1(𝑥) = 𝑥; 

3) Each of the functions 𝑔𝑖 has an inverse 

𝑔𝑖
−1: 𝑔1

−1 = 𝑔1, 𝑔2
−1 = 𝑔4, 𝑔3

−1 = 𝑔3, 𝑔4
−1 = 𝑔2 

The system of function 𝐺 = {𝑔1, 𝑔2} from example 1 has the same properties. 

If we were now asked to solve any functional equation of the from  

𝑎(𝑥)𝑓(𝑥) + 𝑏(𝑥)𝑓 (
𝑥−1

𝑥+1
) + 𝑐(𝑥)𝑓 (−

1

𝑥
) + 𝑑(𝑥)𝑓 (

𝑥+1

1−𝑥
) = ℎ(𝑥) , (9) 

we would do this by making the substitutions 𝑥 → 𝑔2(𝑥), 𝑥 → 𝑔3(𝑥), 𝑥 → 𝑔4(𝑥),  

after which we would arrive at a linear system. 

For example, let’s write down what comes of (9) after replacing 𝑥 → 𝑔2(𝑥) More over, 𝑔2(𝑥) →
𝑔3(𝑥) ,  𝑔3(𝑥) → 𝑔4(𝑥), 𝑔4(𝑥) → 𝑔1(𝑥) , so we get the equation  

𝑎 (
𝑥 − 1

𝑥 + 1
) 𝑓 (

𝑥 − 1

𝑥 + 1
) + 𝑏 (

𝑥 − 1

𝑥 + 1
) 𝑓 (−

1

𝑥
) + 𝑐 (

𝑥 − 1

𝑥 + 1
) 𝑓 (

𝑥 + 1

1 − 𝑥
) + 𝑑 (

𝑥 − 1

𝑥 + 1
) 𝑓(𝑥) = ℎ (

𝑥 − 1

𝑥 + 1
) 
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Now let’s give the following definition. 

Definition. An arbitrary set G of functions defined on some set M is called a group under the 

operation ∘, if it has the same properties as the system (𝑔1, 𝑔2, 𝑔3, 𝑔4), that is, 

1. For any two functions 𝑓 ∈ 𝐺, 𝑔 ∈ 𝐺, their composition 𝑓 ∘ 𝑔 is also belongs to G. 

2. The function 𝑒(𝑥) = 𝑥 belongs to G. 

3. For every function 𝑓 ∈ 𝐺 belongs is an inverse function 𝑓−1 , which also belongs to G . 

Conclusion. 

We can now outline a general method for solving certain functional equations using the concept of 

a group of functions.Let in the functional equation 

𝑎1𝑓(𝑔1) + 𝑎2𝑓(𝑔2)+. . . +𝑎𝑛𝑓(𝑔𝑛) = 𝑏 (10) 

The expressions under the sign of the unknown function 𝑓(𝑥) be elements of a group G consisting 

of “n” function: 𝑔1(𝑥) = 𝑥 , 𝑔2(𝑥) , … , 𝑔𝑛(𝑥), and the coefficients of equation (10) 𝑎1, 𝑎2, … , 𝑎𝑛, b 

are some functions of x. Let’s assume that equation (10) has a solution. Let’s replace 𝑥 → 𝑔2(𝑥). 

As a result, the function sequence 𝑔1, 𝑔2, … , 𝑔4 will transform into the sequence 𝑔1 ∘ 𝑔2, 𝑔2 ∘
𝑔2 , … , 𝑔𝑛 ∘ 𝑔2,again consisting of all elements of the group. 

Therefore, the “unknowns” 𝑓(𝑔1), 𝑓(𝑔2),… , 𝑓(𝑔𝑛) will be rearranged and we will obtain a new 

linear equation of the same form as (10).Next, in equation (10) we make the substitutions 𝑥 →
𝑔3(𝑥), 𝑥 → 𝑔4(𝑥),… . , 𝑥 → 𝑔𝑛(𝑥) , after which we obtain a system of n linear equations, that 

should be solved.If there are solutions,than we must also check to make sure that they satisfy 

equation (10). 

As an example, consider the equation 

2𝑥𝑓(𝑥) + 𝑓 (
1

1−𝑥
) = 2𝑥 (11) 

The set of functions 𝑔1 = 𝑥 , 𝑔2 =
1

1−𝑥
 , 𝑔3 = 

𝑥−1

𝑥
 forms a group with a multiplication table,  

∘ 𝑔1 𝑔2 𝑔3 

𝑔1 𝑔1 𝑔2 𝑔3 

𝑔2 𝑔2 𝑔3 𝑔1 

𝑔3 𝑔3 𝑔1 𝑔2 

Replacing x in equation (11) by 
1

1−𝑥
 and 

𝑥−1

𝑥
 ,we obtain the system  

{
 
 

 
 

2𝑥𝑓1 + 𝑓2 = 2𝑥
2

1 − 𝑥
𝑓2 + 𝑓3 =

2

1 − 𝑥
2(𝑥 − 1)

𝑥
𝑓2 + 𝑓1 =

2(𝑥 − 1)

𝑥

 

where 𝑓1 = 𝑓(𝑥), 𝑓2 = 𝑓(𝑔2(𝑥)) = 𝑓 (
1

1−𝑥
) , 𝑓3 = 𝑓(𝑔3(𝑥)) = 𝑓 (

𝑥−1

𝑥
), solving which we get by 

checking 𝑓1 = 𝑓(𝑥) =
6𝑥−2

7𝑥
 at 𝑥 ≠ −1, 𝑥 ≠ 0. 

In conclusion, we give some examples of groups of functions that can be used in solving 

functional equations. 

𝐺1 = {𝑥, 𝑎 − 𝑥} , 𝐺2 = {𝑥 ,
𝑎

𝑥
} (here and further 𝑎 ≠ 0) 𝐺3 = {𝑥 ,

𝑎

𝑥
, − 𝑥, −

𝑎

𝑥
 } , 𝐺4 =

{𝑥 ,
1

𝑥
, − 𝑥, −

1

𝑥
 ,
𝑥−1

𝑥+1
,
1−𝑥

𝑥+1
,
𝑥+1

𝑥−1
,
𝑥+1

1−𝑥
} , 𝐺5 = {𝑥,

𝑎2

𝑥
, 𝑎 − 𝑥,

𝑎𝑥

𝑥−𝑎
,
𝑎𝑥−𝑥2

𝑥
 ,
𝑎2

𝑎−𝑥
}, 𝐺6 =

{𝑥,
𝑥√3−1

𝑥+√3
 ,
𝑥−√3

𝑥√3+1
 , −

1

𝑥
 ,
𝑥+√3

1−𝑥√3
,
𝑥√3+1

√3−𝑥
 }. 
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Abstract. In this article, we examined one of the methods for solving functional equations, using 

the most important concept of modern algebra- the concept of a group . And in the article we also 

showed examples that many functions are obtained from basic ones using compositions and 

algebraic operations. 
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