IMMUNOLOGICAL ROLE OF TRANSFORMING GROWTH FACTOR BETA IN BREAST CANCER

Authors

  • Abdulameer Kareem, Leelo Al-Obaidy Al-Qadisiyah University, Nursing College, Diwaniyah, Iraq
  • Yusra Jabbar Hasan Egyptian Board of Medical Oncology, Senior Oncologist at Al-Jawad Oncology Center
  • Hawraa Abdulameer Iraqi Board of Medical Oncology, Senior Oncologist at Al-Jawad Oncology Center

Abstract

This review examines the challenges and advancements in early detection and treatment that impact breast cancer patient prognosis, with a focus on the role of the immune system in recognizing and combating cancer cells and the involvement of TGF-β in these processes. It provides a comprehensive framework for understanding how TGF-β interacts with immune dynamics in breast cancer. The three isoforms of transforming growth factor-beta (TGF-β1, TGF-β2, and TGF-β3) are pleiotropic and are part of a large family of cytokines that regulate cell growth, differentiation, extracellular matrix production, and immune responses. TGF-β is crucial in breast cancer due to its roles in orchestrating carcinogenesis, angiogenesis, and invasion. Initially, TGF-β plays a suppressive role by regulating immune responses, but as the disease progresses, it is co-opted by cancer cells to promote immune evasion and tolerance.

References

1. Moreau, J.M., Velegraki, M., Bolyard, C., Rosenblum, M.D. and Li, Z., 2022. Transforming growth factor–β1 in regulatory T cell biology. Science immunology, 7(69), p.eabi4613. nih.gov

2. Lodyga, M. & Hinz, B., 2020. TGF-β1–a truly transforming growth factor in fibrosis and immunity. Seminars in cell & developmental biology. [HTML]

3. Zhang, J., Thorikay, M., van der Zon, G., van Dinther, M. and Ten Dijke, P., 2020. Studying TGF-β signaling and TGF-β-induced epithelial-to-mesenchymal transition in breast cancer and normal cells. JoVE (Journal of Visualized Experiments), (164), p.e61830. universiteitleiden.nl

4. Li, Y., Li, L., Qin, J., Wu, J., Dai, X., & Xu, J., 2021. OSR1 phosphorylates the Smad2/3 linker region and induces TGF-β1 autocrine to promote EMT and metastasis in breast cancer. Oncogene. [HTML]

5. AKL Al-Ubaidy, Immunoexpressions of Cell Cycle Regulatory Proteins, Ki-67, Bcl-2, and Expressions of Bax, TGF-ß1 mRNA in Colorectal Carcinoma. Ph. D. Thesis College of Medicine/Al-Nahrain University-Iraq.

6. Tauriello, D. V. F., Sancho, E., & Batlle, E., 2022. Overcoming TGFβ-mediated immune evasion in cancer. Nature Reviews Cancer. ub.edu

7. Zelisko, N., Lesyk, R., & Stoika, R., 2024. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorganic Chemistry. [HTML]

8. Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y. and Li, Y., 2021. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 6(1), p.263. nature.com

9. Brostjan, C. & Oehler, R., 2020. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discovery. nature.com

10. Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., Wang, B., Wang, Q., Zhao, Y. and Cai, Y., 2020. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. International Immunopharmacology, 88, p.106939. [HTML]

11. Braczkowski, M.J., Kufel, K.M., Kulińska, J., Czyż, D.Ł., Dittmann, A., Wiertelak, M., Młodzik, M.S., Braczkowski, R. and Soszyński, D., 2024. Pleiotropic Action of TGF-Beta in Physiological and Pathological Liver Conditions. Biomedicines, 12(4), p.925. mdpi.com

12. Lomelí-Nieto, J.A., Muñoz-Valle, J.F., Baños-Hernández, C.J., Navarro-Zarza, J.E., Godínez-Rubí, J.M., García-Arellano, S., Ramírez-Dueñas, M.G., Parra-Rojas, I., Villanueva-Pérez, A. and Hernández-Bello, J., 2023. Transforming growth factor beta isoforms and TGF-βR1 and TGF-βR2 expression in systemic sclerosis patients. Clinical and experimental medicine, 23(2), pp.471-481. researchgate.net

13. Krawczak-Wójcik, K., Mazurkiewicz, A. and Petr, M., 2024. TGF-Β Isoforms: TGF-β1, TGF-β2 and TGF-β3 in Ligament and Tendon Healing. Polish Journal of Sport and Tourism, 31(2), pp.3-10. sciendo.com

14. Ren, L.L., Li, X.J., Duan, T.T., Li, Z.H., Yang, J.Z., Zhang, Y.M., Zou, L., Miao, H. and Zhao, Y.Y., 2023. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities. Chemico-biological interactions, 369, p.110289. researchgate.net

15. Tzavlaki, K. & Moustakas, A., 2020. TGF-β Signaling. Biomolecules. mdpi.com

16. Rodari, M. M., Cerf-Bensussan, N., & Parlato, M., 2022. Dysregulation of the immune response in TGF-β signalopathies. Frontiers in Immunology. frontiersin.org

17. Peng, D., Fu, M., Wang, M., Wei, Y., & Wei, X., 2022. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Molecular cancer. springer.com

18. Xie, F., Zhou, X., Su, P., Li, H., Tu, Y., Du, J., Pan, C., Wei, X., Zheng, M., Jin, K. and Miao, L., 2022. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nature communications, 13(1), p.4461. nature.com

19. Chen, S.Y., Mamai, O. and Akhurst, R.J., 2022. TGFβ: signaling blockade for cancer immunotherapy. Annual review of cancer biology, 6(1), pp.123-146. annualreviews.org

20. Chen, B., Mu, C., Zhang, Z., He, X., & Liu, X., 2022. The love-hate relationship between TGF-β signaling and the immune system during development and tumorigenesis. Frontiers in immunology. frontiersin.org

21. Yan, W., Rao, D., Fan, F., Liang, H., Zhang, Z. and Dong, H., 2024. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Frontiers in Oncology, 14. nih.gov

22. Luo, Q., Hu, Z., Zhao, H., Fan, Y., Tu, X., Wang, Y., & Liu, X., 2023. The role of TGF-β in the tumor microenvironment of pancreatic cancer. Genes & Diseases. sciencedirect.com

23. Singh, S., Gouri, V., & Samant, M., 2023. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Medical Oncology. [HTML]

24. Mirlekar, B., 2022. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE open medicine. sagepub.com.

25. Nixon, B. G., Gao, S., Wang, X., & Li, M. O., 2023. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nature Reviews Immunology. nih.gov

26. Lee, H.K., Nam, M.W., Go, R.E., Koo, J., Kim, T.H., Park, J.E. and Choi, K.C., 2023. TGF-β2 antisense oligonucleotide enhances T-cell mediated anti-tumor activities by IL-2 via attenuation of fibrotic reaction in a humanized mouse model of pancreatic ductal adenocarcinoma. Biomedicine & Pharmacotherapy, 159, p.114212. sciencedirect.com

27. Sritharan, S. & Sivalingam, N., 2024. Secretion of IL-6 and TGF-β2 by Colon Cancer Cells May Promote Resistance to Chemotherapy. Indian Journal of Clinical Biochemistry. [HTML]

28. Seif, F., Torki, Z., Zalpoor, H., Habibi, M. and Pornour, M., 2023. Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Molecular Therapy-Oncolytics, 28, pp.132-157. cell.com

29. Malla, R.R., Vasudevaraju, P., Vempati, R.K., Rakshmitha, M., Merchant, N. and Nagaraju, G.P., 2022. Regulatory T cells: their role in triple‐negative breast cancer progression and metastasis. Cancer, 128(6), pp.1171-1183. wiley.com

30. Samii, E., Hurni, Y., & Huber, D., 2023. Management and outcomes of metastatic and recurrent Malignant phyllodes tumors of the breast: a systematic literature review. European Journal of Breast Health. nih.gov

31. Mirzaei, S., Paskeh, M.D.A., Saghari, Y., Zarrabi, A., Hamblin, M.R., Entezari, M., Hashemi, M., Aref, A.R., Hushmandi, K., Kumar, A.P. and Rabiee, N., 2022. Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator?. International Journal of Biological Macromolecules, 206, pp.435-452. google.com

32. Chen, W. J., 2023. TGF-β Regulation of T Cells. Annual review of immunology. annualreviews.org

33. Tian, W., Wei, W., Qin, G., Bao, X., Tong, X., Zhou, M., Xue, Y., Zhang, Y. and Shao, Q., 2024. Lymphocyte homing and recirculation with tumor tertiary lymphoid structure formation: predictions for successful cancer immunotherapy. Frontiers in Immunology, 15, p.1403578. frontiersin.org

34. Aftabi, S., Barzegar Behrooz, A., Cordani, M., Rahiman, N., Sadeghdoust, M., Aligolighasemabadi, F., Pistorius, S., Alavizadeh, S.H., Taefehshokr, N. and Ghavami, S., 2024. Therapeutic targeting of TGF‐β in lung cancer. The FEBS Journal. wiley.com

35. Du, G., Dou, C., Sun, P., Wang, S., Liu, J., & Ma, L., 2024. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Frontiers in Immunology. frontiersin.org

36. Zou, Y., Kamada, N., Seong, S. Y., & Seo, S. U., 2023. CD115− monocytic myeloid-derived suppressor cells are precursors of OLFM4high polymorphonuclear myeloid-derived suppressor cells. Communications biology. nature.com

37. Yu, G., Corn, P.G., Mak, C.S.L., Liang, X., Zhang, M., Troncoso, P., Song, J.H., Lin, S.C., Song, X., Liu, J. and Zhang, J., 2024. Prostate cancer–induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone–tumor microenvironment through Wnt pathway–induced M2 macrophage polarization. Proceedings of the National Academy of Sciences, 121(33), p.e2402903121. pnas.org

38. Li, M., Jiang, P., Wei, S., Wang, J., & Li, C., 2023. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Frontiers in Immunology. frontiersin.org

39. Toledo, B., Zhu Chen, L., Paniagua-Sancho, M., Marchal, J.A., Perán, M. and Giovannetti, E., 2024. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. Journal of Hematology & Oncology, 17(1), p.44. springer.com

40. Han, J., Dong, L., Wu, M., & Ma, F., 2023. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic …. Frontiers in Immunology. frontiersin.org

41. Villar, V.H., Subotički, T., Đikić, D., Mitrović-Ajtić, O., Simon, F. and Santibanez, J.F., 2023. Transforming growth factor-β1 in cancer immunology: opportunities for immunotherapy. Advances in Molecular Pathology, pp.309-328. [HTML]

42. Zhao, Y., Shen, M., Wu, L., Yang, H., Yao, Y., Yang, Q., Du, J., Liu, L., Li, Y. and Bai, Y., 2023. Stromal cells in the tumor microenvironment: accomplices of tumor progression?. Cell Death & Disease, 14(9), p.587. nature.com

43. Gao, D., Fang, L., Liu, C., Yang, M., Yu, X., Wang, L., Zhang, W., Sun, C. and Zhuang, J., 2023. Microenvironmental regulation in tumor progression: interactions between cancer-associated fibroblasts and immune cells. Biomedicine & Pharmacotherapy, 167, p.115622. sciencedirect.com

44. Wang, X., Eichhorn, P. J. A., & Thiery, J. P., 2023. TGF-β, EMT, and resistance to anti-cancer treatment. Seminars in Cancer Biology. sciencedirect.com

45. Abdulameer K. Leelo and Hawraa A. K. Leelo, Immunohistochemical Expression of TGF-β1 and Ki-67 in a Paraffin-Embedded Section of Breast Cancer Tissue. Indian Journal of Forensic Medicine and Toxicology. January 2019.

46. Jiang, Y.L., Li, X., Tan, Y.W., Fang, Y.J., Liu, K.Y., Wang, Y.F., Ma, T., Ou, Q.J. and Zhang, C.X., 2024. Docosahexaenoic acid inhibits the invasion and migration of colorectal cancer by reversing EMT through the TGF-β1/Smad signaling pathway. Food & Function. [HTML]

47. Ali, S., Rehman, M.U., Yatoo, A.M., Arafah, A., Khan, A., Rashid, S., Majid, S., Ali, A. and Ali, M.N., 2023. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. European Journal of Pharmacology, 947, p.175678. [HTML]

48. Fasano, M., Pirozzi, M., Miceli, C.C., Cocule, M., Caraglia, M., Boccellino, M., Vitale, P., De Falco, V., Farese, S., Zotta, A. and Ciardiello, F., 2024. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. International Journal of Molecular Sciences, 25(13). nih.gov

49. Fjørtoft, M. O., Huse, K., & Rye, I. H., 2024. The tumor immune microenvironment in breast cancer progression. Acta Oncologica. nih.gov

50. Preventive Services Task Force, U. S., 2024. Screening for breast cancer. JAMA. jamanetwork.com

51. Yi, M., Wu, Y., Niu, M., Zhu, S., Zhang, J., Yan, Y., Zhou, P., Dai, Z. and Wu, K., 2022. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. Journal for Immunotherapy of Cancer, 10(12). nih.gov

52. Bauer, T.M., Santoro, A., Lin, C.C., Garrido-Laguna, I., Joerger, M., Greil, R., Spreafico, A., Yau, T., Goebeler, M.E., Hütter-Krönke, M.L. and Perotti, A., 2023. Phase I/Ib, open-label, multicenter, dose-escalation study of the anti-TGF-β monoclonal antibody, NIS793, in combination with spartalizumab in adult patients with advanced tumors. Journal for Immunotherapy of Cancer, 11(11). nih.gov

53. Tie, Y., Tang, F., Peng, D., Zhang, Y., & Shi, H., 2022. TGF-beta signal transduction: biology, function and therapy for diseases. Molecular biomedicine. springer.com

54. Guo, W., Liu, H., Yan, Y., Wu, D., Yao, H., Lin, K. and Li, X., 2024. Targeting the TGF-β signaling pathway: an updated patent review (2021–present). Expert Opinion on Therapeutic Patents, 34(3), pp.99-126. [HTML]

55. Gulley, J.L., Schlom, J., Barcellos‐Hoff, M.H., Wang, X.J., Seoane, J., Audhuy, F., Lan, Y., Dussault, I. and Moustakas, A., 2022. Dual inhibition of TGF‐β and PD‐L1: a novel approach to cancer treatment. Molecular oncology, 16(11), pp.2117-2134. wiley.com

56. Liao, J., Chen, R., Lin, B., Deng, R., Liang, Y., Zeng, J., Ma, S. and Qiu, X., 2024. Cross-Talk between the TGF-β and Cell Adhesion Signaling Pathways in Cancer. International Journal of Medical Sciences, 21(7), p.1307. nih.gov

57. Barcellos-Hoff, M. H. & Gulley, J. L., 2023. Molecular Pathways and Mechanisms of TGFβ in Cancer Therapy. Clinical Cancer Research. nih.gov

58. Ma, Z., Sun, J., Li, Z., Huang, S., & Li, B., 2024. AMDHD1 acts as a tumor suppressor and contributes to activation of TGF-β signaling pathway in cholangiocarcinoma. Cell Death & Differentiation. nature.com

59. Britton, W.R., Cioffi, I., Stonebraker, C., Spence, M., Okolo, O., Martin, C., Henick, B., Nakagawa, H. and Parikh, A.S., 2024. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers, 16(17), p.3047. mdpi.com

60. Lopez-Sanchez, P., Avila-Moreno, F., Hernandez-Lemus, E., Kuijjer, M.L. and Espinal-Enriquez, J., 2024. Patient-specific gene networks reveal novel subtypes and predictive biomarkers in lung cancer. bioRxiv, pp.2024-08. biorxiv.org

61. Reichelt, P., Bernhart, S., Wilke, F., Schwind, S., Cross, M., Platzbecker, U. and Behre, G., 2023. MicroRNA Expression Patterns Reveal a Role of the TGF-β Family Signaling in AML Chemo-Resistance. Cancers, 15(20), p.5086. mdpi.com

62. Hein, L.E., SenGupta, S., Gunasekaran, G., Johnson, C.N. and Parent, C.A., 2023. TGF-β1 activates neutrophil signaling and gene expression but not migration. Plos one, 18(9), p.e0290886. plos.org

Downloads

Published

2024-10-24

How to Cite

Leelo Al-Obaidy, A. K., Hasan, Y. J., & Abdulameer, H. (2024). IMMUNOLOGICAL ROLE OF TRANSFORMING GROWTH FACTOR BETA IN BREAST CANCER. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 4(10), 385–393. Retrieved from http://inovatus.es/index.php/ejmmp/article/view/4284